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Abstract—Segmentation of lungs with severe pathology is
a nontrivial problem in clinical application. Due to complex
structures, pathological changes, individual differences and low
image quality, accurate lung segmentation in clinical 3D CT
images is still a challenging task. To overcome these problems, a
novel dictionary-based approach is introduced to automatically
segment pathological lungs in 3D low-dose CT images. Sparse
shape composition is integrated with eigenvector space shape
prior model, called eigenspace sparse shape composition, to
reduce local shape reconstruction error caused by weak and
misleading appearance prior information. To initialize the shape
model, a landmark recognition method based on discriminative
appearance dictionary is introduced to handle lesions and local
details. Furthermore, a new vertex search strategy based on
gradient vector flow field is also proposed to drive shape
deformation to target boundary. The proposed algorithm is tested
on 78 3D low-dose CT images with lung tumors. Compared to
state-of-the-art methods, the proposed approach can robustly and
accurately detect pathological lung surface.

Index Terms—Pathological lung segmentation, eigenspace s-
parse shape composition, gradient vector flow, discriminative
appearance dictionary.

I. INTRODUCTION

COmputed tomography (CT) is a diagnostic imaging tech-
nique widely used for lung diseases, and especially low-

dose CT is commonly used for lung tumor analysis. As
an important preprocessing step in automatically analyzing
lung, automatic lung segmentation has received considerable
attention from researchers [1]. Accurate and automatic lung
segmentation can save physicians’ efforts to annotate lung
anatomy since it is tedious and time-consuming to label each
voxel in huge amount of slices. In addition, lung segmentation
can help to improve the accuracy of lung tumor segmentation
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and lung nodule detection by 17% [2]. However, it is a nontriv-

(a) (b) (c)

(d) (e) (f)
Fig. 1. Illustration of the challenges in pathological lung segmentation. (b)
and (e) A low-dose CT image; (a)(d) the locally enlarged right lungs; (c)(f) the
locally enlarged left lungs. Red arrows indicates large tumors. Yellow arrows
indicates the fuzzy boundary, and blue arrows denotes the trachea with the
similar appearance to the lung.

ial task to accurately and automatically segment lungs in CT
images, especially in the low-dose CT images. Pathological
lung segmentation is still a challenging task in medical image
processing field, as shown in Fig.1. First, the internal structures
of lungs are complex and difficult to recognize. Lungs are
part of the lower respiratory and divided into different lobes.
Pulmonary arteries and veins spread throughout the lungs. Sec-
ond, there are often large pathological lesions. Large tumors
lead to large difference in image intensity values, and great
changes to structures and shapes. Third, the anatomy of lungs
varies largely from different healthy individuals, both in shape
and size. Forth, image quality is often low. The image contrast
to background is often low due to the low-dose radiation and
pathological lesions such as tumors. The boundaries between
the tumors and neighboring organs or structures are also not
clear. The movement artifacts produced by breaths are obvious
in 3D low-dose CT images.
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In this paper, a novel shape prior model based segmentation
framework with appearance priors is proposed to address the
aforementioned challenges in the segmentation module of
the surgery planning. The proposed framework consists of
two parts: training and testing. The proposed segmentation
framework is successfully applied to segment 3D pathological
lungs in 78 low-dose clinical CT scans with leave-one-out
strategy. The main contributions of the proposed method are
as follows:

1) Inspired by [3]–[5], a new sparse shape composition
(ESSC) is proposed to reconstruct 3D surface of pathological
lungs. In [3], [5], overall shape was reconstructed from the
aligned shape dictionary and an error variable was introduced
to handle single point location errors. Compared to traditional
sparse shape composition (SSC), eigenvectors obtained by
principal component analysis (PCA) are integrated into the
objective function of SSC. All training shapes are registered
to the average shape of the point distribution model (PDM)
using similarity transformation to construct shape dictionary
for sparse shape composition in the eigenspace. This process
refines the rough surface obtained by shape deformation, and
avoids the loss of details due to the anatomy variations of
individual lungs and large lesions. This strategy reduces the
loss of local detail in the traditional SSC in [3]–[5] when the
shape is constrained to be deformed to the target boundary.

2) A new hybrid search strategy is developed to deform
shape based on normal direction and gradient vector flow
(GVF) field [6]. In [3], [5], a learning-based method was
employed for landmark detection. There may be gross errors or
point missing from the detection. Worse still, the initial shape
was only deformed following the image gradient information.
However, there is no point missing in our landmark detection
by using our ESSC model in the process of shape deformation.
Our deformation model was based on a hybrid search strat-
egy including normal-based, GVF-based in the deformation
stage. On the one hand, normal-based deformation [7] con-
strained with our ESSC model can rapidly transform the three-
dimensional mesh into the capture range of GVF. On the other
hand, GVF-based deformation also constrained with our ESSC
model allows mesh vertices to smoothly move towards target
boundary even with large concavity. In addition, neighboring
vertices are also considered to increase the accuracy and
robustness of our approach.

3) A new vertex deformation algorithm is designed by
using the GVF field and a distance function in the iterative
optimization process. As the deformed mesh moves toward
target boundary, the gradient vector field should be almost
parallel with the normal of vertices of deformed mesh at
the boundary of lungs. Therefore, the projection method is
used to suppress non-parallel directions for vertex searching.
In addition, a new target boundary deformation function is
designed so that target points are found near a corresponding
initial mesh and the mesh adaptation is stopped correctly. The
new distance function is considered from two aspects: the
region distance and the surface distance. The region distance
makes the deformation of the mesh as close as possible to the
target boundary. The surface distance ensures smoothness of
the deformed mesh.

4) A robust 3D shape recognition approach iteratively inte-
grates 3D representative shape prior and discriminative appear-
ance prior together to derive patient-specific initial shapes to
target boundary based on the label reconstruction by DAD [8]
and threshold segmentation [9]. The reconstructed label value
near the target surface is combined with the normal-based
and GVF-based search strategy. Therefore, this integration can
combine discriminative appearance priori and representative
shape priori, in order to deal with lung tumors to accurately
recognize local details and solve the efficiency problem of the
original appearance dictionary learning method.

II. RELATED WORK

Many previous methods have been proposed for automatic
pathological lung segmentation. An overall review of different
algorithms have been presented by [10]–[12], including their
feasibility and shortcomings in the case of the most common
lung abnormalities. Prasad et al. [13] proposed an adaptive
thresholding based pathological lung segmentation method.
The threshold value was determined by a comparison of the
curvature of the lung boundary to that of the ribs. Although
their method improved over conventional thresholding tech-
niques significantly, it produced large errors in lesions lying
inside the pulmonary lobe. Wang et al. [14]–[16] proposed
a two-stage method for the segmentation of lungs with in-
terstitial disease. Sluimer et al. [17] proposed a registration
approach for the segmentation of pathological lungs. Their
method achieved high accuracy when the lung tissue was
only affected by minimal to moderate pathology, but failed
in many pathological cases. Shi et al. [18] leveraged low-
rank and sparse decomposition theory for robust pathological
lung segmentation in CT images. Although the authors de-
livered promising results for severely pathological cases, the
computing time reached 145 min and needed to be reduced to
clinically acceptable range.

Recently, the deformable segmentation model has been
applied in the field of the medical imaging computing. In
order to locate target boundary in three dimensions adequately,
boundary candidates were searched along the normal vector
of the vertex at equidistant positions for each vertex on a
subspace shape model [9]. The normal vector only takes
into account the initial shape information. For many local
details with relatively large curvature, the deviation of the
mesh vertex often occurs. This gives a high requirement for
the subsequent reconstruction algorithm. Ecabert et al. [19],
[20] utilized a projection-based approach to suppress non-
parallel directions for vertex searching. This alleviated the
deficiency of the normal vector of the vertex. Nevertheless,
the final mesh was mainly based on the normals of the
mesh vertices. Kiaei et al. [21] improved a snake algorithm
to deform through the guidance of the gradient vector flow
field instead of the gradient field. Nevertheless, except for
adjusting parameters, no priori knowledge about the shape can
be expressed. Traditional model-based deformable approaches,
such as active shape model [22] and its series of extensions
[23]–[25], are able to combine low-level appearance and high-
level shape in a unified framework. However, it is difficult to
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Fig. 2. The framework of the proposed method.

preserve local details. In addition, the appearance model is
assumed to fit the intensities as Gaussian distributions, which
do not hold in many applications [4].

To address these challenges in a unified framework, Zhang
et al. [3] proposed a combined method with landmark de-
tection and shape inference. However, it might lead to image
occlusion or landmarks missing. To solve this problem, they
modeled reconstruction error as a sparse vector. However,
it was difficult to effectively fit the shape modes especially
for local details with relatively large curvature. Farhangi
et al. [26] proposed to segment 3D lung nodules by active
contour based SSC algorithm. To solve a large scale sparse
optimization problem, Zhang et al. [5] performed a sparse
shape composition on learned dictionary instead of using the
original database. However, it tended to neglect the local
details. A set of local SSC models [?], [4], [5] were proposed
to describe the shape in a segment-to-segment manner and
build shape models on them independently. Regardless of the
above improvements or in combination with other algorithms
[?], the model had been not fundamentally optimized.

In addition, deep learning [27] has been demonstrated to be
a powerful tool in medical image segmentation. One of the
most popular methods for semantic segmentation was U-Net
[28]. Md Zahangir et al. [29] proposed a Recurrent Residual
convolutional Neural Network (RRCNN) for lung lesion seg-

mentation, which utilized U-Net, Residual Network and RC-
NN. Rodney LaLonde et al. [30] developed a convolutional-
deconvolutional capsule network (SegCaps) for pathological
lung segmentation in CT scans. The proposed framework was
recently introduced from the capsule network architecture.
Experimentally, SegCaps not only produce slightly improved
accuracies, but also contain 95.4% fewer parameters than U-
Net [28] and 38.4% fewer than Tiramisu [31], when compared
with state-of-the-art networks U-Net [28], [31].

III. METHOD

The proposed method aims to segment pathological lungs
in 3D low-dose CT images using both shape and appearance
dictionary. Fig.2 shows the framework of the proposed method,
including training and testing phases. In the training phase, we
construct three models: PDM includes mean shape and its vari-
ation modes, shape dictionary and discriminative appearance
model based on dictionary learning. In the testing phase, a
threshold based normal driven deformation method is utilized
to obtain an initial shape. Subsequently, the initial shape is
iteratively deformed and refined by ESSC with vertex normal
and GVF field.

A. Model Training
Labeled binary images by clinical experts are converted

into triangulated meshes to represent manual segmentation by
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using marching cube algorithm [32]. Minimum description
length algorithm [33] is used to obtain the corresponding
relationship between all triangulated meshes for training data.
A training sample mesh is randomly selected as the reference,
and the rest of the meshes are aligned through similarity trans-
formation in a three dimension Cartesian coordinate system.

The training repository of shape prior model for sparse
shape composition can be represented as a matrix Ds =
[d1, d2, · · · , di, · · · , dks ] ∈ Rns×ks , where di is three dimen-
sion Cartesian coordinate vector of the ith training mesh, ks
is the number of training meshes and ns is the number of
vertices of the mesh multiplied by the dimension. Inter-patient
and inter-phase shape variability of lungs can be learned from
the consistent set of training meshes using PCA. The PDM can
be used to describe shape variability. With the combination of
similarity transformation, the resulting PDM can be expressed
as,

ψk = T−1

(
ψ̄ +

ks∑
m=1

λmpm

)
, (1)

ψ̄ =
1

ks

ks∑
m=1

ψm (2)

where, ψk denotes the kth aligned triangulated mesh. T−1

is the inverse of similarity transformation from the original
coordinate system to the registered shape coordinate system.
pm is the variation mode of obtained through PCA. λm is the
corresponding weight for the principal mode pm.

For each vertex in the ψk, the same number of 3D patches
is extracted in the same neighboring positions from all training
CT images to form a training 3D patch library Pl. Each 3D
patch is denoted as a column vector and group all the 3D
patches together as a matrix Pl = [p1, p2, · · · , pi, · · · , pna ] ∈
Rma×na . Pl denotes the training patch pi library containing na
patches, and ma is the size of the 3D patch. Therefore, with
the combination of manual label, the appearance dictionary
can be expressed as [8], [34],

arg min
Da,α,w

= ‖Pl −Daα‖22 + λ1 ‖L− wα‖22 + λ2‖α‖1 (3)

where Da = [a1, a2, · · · , ai, · · · , aka ] ∈ Rma×ka is the
learned dictionary. α ∈ Rka×na is the sparse coding coef-
ficient matrix of the input patch library, ka is the number of
dictionary elements and L is manual label corresponding to Pl.
w is the learned linear predictive classifier. λ1, λ2 are scalar
constants.

B. Eigenspace Sparse Shape Composition

Given an input shape to be refined ψ ∈ Rns , it can be
approximately represented as a weighted linear combination
of existing shapes Ds, and the parts which cannot be ap-
proximated are noise [3]. Mathematically, it seeks the optimal
weight β1 in a least-squares sense, leading to the following
minimization problem,

arg min
β1

‖T (ψ)− TS (Ds)β1‖22 (4)

where T is similarity transformation from the deformed mesh
to the average mesh calculated in the training step, and TS

is similarity transformations from the training meshes to the
average shape. The refined input shape ψ is presented as Ds

and transformed back by the inverse of the transformation
T−1.

There are two limitations in Eq.(4) according to [3]. First,
the matrix Ds maybe overcomplete and the function may not
have a unique solution. Second, if any linear combination
can be used, the noises included in the input shape may be
preserved. Thus, the classical SSC performs a sparse linear
combination of training shape instances to represent a pre-
aligned input shape. The specific approach is to add the
constraints of L0 norm on the weight β1. The minimization
problem can be expressed as,

arg min
β1

‖T (ψ)− TS (Ds)β1‖22 ,

s.t.‖β1‖0 ≤ K1

(5)

where K1 is the pre-defined sparsity and ensures that the
number of nonzero elements in β1 is smaller than K1. Two
remaining limitations of the SSC model in Eq.(5): (1) The
global shape tends to be fitted only as the overall shape
and local details are often neglected; (2) It will have poor
performance in case where the input shapes are corrupted
by gross errors or outliers due to complex lesions or sharp
structures. To address these problems of the classical SSC,
eigenvectors are integrated into SSC, named eigenspace sparse
shape composition, so as to represent local reconstruction
errors of the shape by additional sparse weight β2 to select
the learned different components in Pm. ESSC is designed
according to two observations: (1) After being aligned to
a unified space, a given shape can be approximated by a
sparse linear combination of training shape instances; (2) If the
approximated shape is refined by SSC, reconstruction errors
might include gross errors from boundary refinement, espe-
cially local errors from pathological changes, sharp structures
and individual variations. Therefore, ESSC is expressed as
minimizing the following objective function,

arg min
β1,β2

‖T (ψ)− TS(Ds)β1 − Pmβ2‖22 ,

s.t.‖β1‖0 ≤ K1, ‖β2‖0 ≤ K2

(6)

where K2 is the sparsity of Pm. The optimization problem
in Eq.(6) is in general intractable and NP-hard due to the
non-convexity of L0 norm. Recently, it has been proved that
solving this kind of problem through L1 norm relaxation can
achieve the same recovery accuracy. Therefore, (6) can be
defined as,

arg min
β1,β2

‖T (ψ)− TS(Ds)β1 − Pmβ2‖22+λ3‖β1‖1+λ4‖β2‖1
(7)

where the first term is the shape reconstructive term with
the combination with SSC and eigenvectors, the second term
adds the sparsity constraint over the shape coding coeffi-
cients β1, the third term adds the sparsity constraint over the
eigenspace coding coefficient β2, ψ is the deformed mesh,
Pm = [p1, p2, · · · , pi, · · · , pm] is the eigenvector matrix, λ3
and λ4 are two scalar constants.

Eq.(7) is solved by alternating minimization scheme. After
ψ and Ds are registered to the average mesh ψ̄, the first
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optimization is executed using the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) [35] in the following form,

arg min
β1

‖T (ψ)− TS(Ds)β1‖22 + λ3‖β1‖1 (8)

The overall shape ψ can be reconstructed from the aligned
Ds in the coordinate system of the average mesh ψ̄. However,
due to pathological changes, sharp structures and individual
variations, the gross errors are inevitable. This problem was
tacked in [3] by adding a special error term e to the objective
function. Shape dictionary D and an unit matrix M were
concatenated into a matrix [D,M ], and then the weight β =
[β1, e] was computed using FISTA. The final refined shape was
constructed by ψ′ = Dβ1. The matrix concatenation reduced
the efficiency of the algorithm tremendously. In addition, the
fitted errors were not utilized to reconstruct the mesh. Local
details such as small structures with large curvature tended to
be neglected. Therefore, the reconstruction error e is further
represented by variation modes Pm. The second optimization
is to fit the local errors e by selecting different components
in Pm. Mathematically, it leads to the following minimization
problem,

arg min
x2

‖e− Pmβ2‖22 + λ4‖β2‖1 (9)

Eq.(9) is also solved by FISTA [35]. The refined shape ψ is
generated as

ψ = T−1 (TS(Ds)β1 + Pmβ2) (10)

C. Shape Deformation

A curvature anisotropic diffusion filter [36] is applied to
remove noise in the test image. The intensity range of the
smoothed image is normalized to [Imin, Imax] = [0, 255], and
then a binary image is obtained by thresholding and mor-
phological operation. Generalized Hough Transform (GHT)
[37] is used to find the initial center based on the average
shape model. The average mesh is moved to the center as the
initial mesh. Initially, the moved average mesh is far from the
target boundary. Briefly, the coarse lung is recognized by using
thresholding and appearance dictionary; the deformed mesh
is adapted along normal or GVF direction to the boundary
of the recognized lung by DAD, and the adapted mesh is
reconstructed by ESSC. The iterative process is successively
employed in three alternating steps.

(1) Normal Based Lung Deformation
In order to derive patient-specific initial shape, an initializa-

tion method combining appearance reconstruction and normal
search strategy is proposed. Specifically, the initialization
consists of three parts: 1) threshold-based shape adaptation;
2) DAD-based shape adaptation; 3) ESSC-based initial shape
inference.

1) Threshold-based shape adaptation: Initially, the moved
average mesh is adapted as previous work [7], [9]. The mesh
is progressively deformed along the normal of its vertices to
detect the candidate boundary of the thresholded coarse lung.

2) DAD-based shape adaptation: The recognized coarse
binary lung by thresholding is then corrected by the DAD
based label reconstruction around the deformed mesh ψ.

(a) (b)

(c) (d)
Fig. 3. Illustration of the difference between our DAD and [8]. (a) A CT
image slice with the red mask representing the segmentation scope of in [8].
(b) Segmentation result by [8]. (c) Our DAD vertices initialization. White
curve represents the initial surface. Yellow rectangle indicates the vertices of
the 3D mesh (red points) are searched towards the target vertices (green points)
along the normal direction. (d) Segmentation results after ESSC inference.

Appearance dictionary representation in testing stage can be
described as

arg min
αt

‖pt −Daαt‖22 + λ2‖αt‖1 (11)

where pt denotes a patch around a vertex in the deformed
mesh, αt ∈ Rka is the sparse coding coefficient vector of the
input patch pt. The center voxel of the input patch pt can be
given a label according to

h = w ∗ αt (12)

Reconstructed label is used to guide the shape deformation
as shown in Fig.3 (c). Specifically, assuming a discrete vertex
vi is in the deformed mesh ψ, and the normal of the vertex
is represented by a vector ni, the candidate position can be
expressed as

vij = vi +
h− ht
|h− ht|

jδni (13)

where δ is the search step size, j = 0, 1, ..., nm is the
search index along the normal direction. nm is the maximum
value of the searching range and ht is the threshold value of
reconstructed gray value of vertex vi. When the label of vij
is not the same as that of vi, sampling is stopped. If j > nt,
and then vi is updated by vij . nt is a moving threshold value.

3) ESSC-based shape inference: Due to the appearance cues
misleading and intrinsic defect in normal direction as shown
in Fig.5 (a)-(c), there may be errors from the vertex selection.
ESSC can be used for shape inference as a regularization step
during deformation and employed as high level constrains to
avoid getting stuck in local minima. Specifically, the deformed
mesh ψ and shape dictionary Ds are registered to the average
mesh ψ̄ and get the registered mesh T (ψ) and the registered
dictionary Ts(Ds). Then, β1 is computed by solving Eq.(8).
TS(Ds)β1 is considered as an overall constructed shape. The
local reconstruction error is further fitted in the eigenspace by
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solving Eq.(9). The refined mesh ψ′ is computed by solving
Eq. (10) with β1 and β2. Iterative deformation is repeated
until the distance ∆d of the refined meshes between successive
iterations is not larger than a given threshold value ∆dt. Eq.(8)
reconstructs the shape by selecting a few globally similar
training shapes but lung shape variation is inhomogeneous.
In the refinement procedure, e may not have large value.
However, the variation modes can be better used to capture
the local shape variation.

(2) GVF Based Lung Deformation

(a) (b) (c)
Fig. 4. The process of GVF-based shape deformation. (a) Gray scale of GVF
field; (b) The locally enlarged GVF field pointed by the yellow arrow in (a);
(c) The locally enlarged GVF field with large curvature pointed by the red
arrow in (a). (b) and (c) show initial points are guided by GVF towards the
corresponding target points (Green). Manual segmentation is shown in green
curves, and initialization is shown red curves.

(a) (b) (c)

(d) (e) (f)
Fig. 5. Comparison of shape deformation based on normal (1st row) and
GVF (2nd row). (a) Segmented lungs (red curves) by normal-based shape
deformation; (b) Segmented lung surfaces of (a); (c) Locally enlarged region
of (b); (d) Segmented lungs (red curves) by GVF-based shape deformation;
(e) Segmented lung surfaces of (d); (f) Locally enlarged region of (e). Local
detail (red arrows) detection is significantly improved by GVF-based shape
deformation.

Although deformation along the normal of vertices allows
the mesh to move toward target boundary. There are also two
key difficulties with normal orientation. First, initial mesh is
difficult to progressively and smoothly reach target boundary
with large concavity, such as sharp structures. The external
force is too strong to cause the boundary to overwhelm where
the curvature of the shape is large. The second problem is
that the normal of the vertices only take into account initial
shape curvature and the moving direction of the vertices is only
related to its initial position. It means that the initial vertex
generally must be close to target boundary, and otherwise it

will probably lead to false deformation, as shown in Fig.5(a)-
(c).

In this section, a new external force based on GVF is
introduced into our model. GVF force pertains rotation forces
to addresses above problems. According to the previous work
[6], [21], [38], an edge map can be defined as

G = −Gσ ∗B (14)

where the Gσ is a 3D Gaussian function with standard
deviation σ, ∗ is convolution and B is the binary image
by thresholding and DAD reconstruction. GVF field vectors
generally have large magnitudes only on the boundaries and
point toward the boundaries (green point), as shown in Fig.4.
The GVF capture range is controlled by setting the standard
deviation σ. As shown in Fig.4, the improved method is used
as the follows. First, the starting vertex vi (red point) in the
deformed mesh ψ has a GVF vector gc, and gc’s angle is θc.
Considers the point that is a neighboring point of vi in the
direction of θc as vj (green point). vj should have a GVF
vector gd nearly paralleling to that of vi, i.e., θc ≈ θd. Sec-
ondly, ‖G(vj)‖ represents the edge map gradient magnitude
at the point vj . Considering a new point vj (j = 1, 2, 3...) as
the neighboring point vj−1 along the direction of vj−1, vj is
successively searched if the following criterion is satisfied,

θvj ≈ θvj−1 , ‖G(vj)‖ > ‖G(vj−1)‖ (15)

The profile points {v1j ,v2j ...vLj } are placed in regular inter-
vals along the GVF as described above. The target point is
defined by

vtargeti = arg max
{vlj‖l=0,1...L}

(Fi(v
l
j)− γ(vlj − vi)2) (16)

where the Fi(·) is the edge detector at a discrete position vlj .
The target point is chosen on the profile where term in bracket
is maximal. γ controls the weight of a penalty term, which
biases the search to nearby points.

In our work, the 3D image GVF field G is used as the
boundary detectors. G is projected onto the triangle normal ni
to suppress non-parallel edges. The result is passed through a
sigmoid function limiting the response to maximal magnitude
gmax.

Glimitproj (vlj) = (ni ·G(vlj))
gmax(gmax +

∥∥G(vlj)
∥∥)

g2max +
∥∥G(vlj)

∥∥2 (17)

The boundary detection function F (·)can be given as

Fi(v
l
j) =

{
±Glimitproj (vlj), if Hvlj

∈ [hmin, hmax]

0, otherwise
(18)

± ensures the consistency of direction, which is to opposite
at the edge of intersection prevent. Each Hvlj

denotes the
reconstructed label near or across boundary by appearance
dictionary learning which must full inside a corresponding
acceptance interval [hmin, hmax].

Although the GVF field converges to the concave boundary
and the maximum deformation range is controlled in order
to minimize the influence of lesions. Local detail mistakes
are inevitable and ESSC is used again for shape inference
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Algorithm 1 GVF Based Lung Deformation.
Require: DAD-based adaptation mesh ψ; Mean mesh ψ̄;

Principal modes Pm; Appearance dictionary Da; Shape
dictionary DS ; Classifier parameters w; Balance parame-
ter, λ2, λ3, λ4, γ, λe; Distance threshold value Et; The
corresponding GVF field G.

Ensure:
Adapted mesh, ψτ .

1: Register each training shape di in the shape dictionary
DS to the mean mesh ψ̄ and get similarity transformation
parameter Ti (di) of the transformed mesh di;

2: Construct the registered dictionary TS (DS);
3: ψτ ← ψ;
4: Initialize energy Eb ← ∞;
5: Sample vertices along the GVF vector gc of ψτ according

to Eq. (15).
6: Compute the reconstructed label Hvlj

according to Eq.(11)
and Eq.(12);

7: Update vtargeti according to Eq.(16) and obtain the de-
formed mesh ψτ ;

8: Compute the mesh deformation region distance
Eregion(p) according to Eq. (20).

9: Register the deformed mesh ψτ to the mean mesh ψ̄
and get the similarity transformation parameter T and the
registered mesh T (ψτ );

10: Compute weight β1, β2 of the ESSC using FISTA [35] to
Eq.(8) and Eq.(9);

11: Compute the refined mesh ψλ according to Eq.(10);
12: Compute Esurface according to Eq.(21);
13: Compute E according to Eq.(19);
14: ∆E ← Eb−E. Eb ← E.
15: If |∆E| < Et, ψτ ← ψλ, and then go to 5; else, get ψτ

and stop.

iteratively. In each iteration, the first step is mesh deformation
by progressively detecting the candidate boundary along the
GVF field direction. In the second step, the mesh by the
normal initialization and variation modes is adjust to generate
a subspace shape model ψλ and constrains the deformation
of mesh ψτ . The deformable adaptation can be described as
minimized a weighted combination

E = Eregion + λeEsurface (19)

where, Eregion denotes a region term, which measures the
magnitude distance between ψτ and ψλ in the GVF field. ψt
represents mesh of the threshold image and the reconstructed
label image. The distance function is defined as,

Eregion =
1

Nr

∑
p

| ‖Gτ (p)‖ − ‖Gt(p)‖ | (20)

p represents a voxel in GVF field. Nr denotes a normalization
parameter in the local region. ‖Gτ (p)‖ and ‖Gt(p)‖ represent
the corresponding magnitude of ψτ and ψt in the GVF
field, respectively. Esurface denotes a boundary term which
measures the coordinate distance between ψτ and ψλ. The

constraint of neighborhood information is considered as

Esurface =
1

Ns

ns/3∑
v=1

∑
v′∈Nv

|ψτ (v)−ψτ (v′)−(ψλ(v)−ψλ(v′))|

(21)
Ns denotes a normalization parameter for the deformed mesh
ψτ . Nv lists the indices of neighbor vertices of v. The iterative
process between GVF-based shape adaptation and ESSC-
based shape inference is described as Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Data

The proposed method was evaluated on 78 3D low-dose CT
images obtained from different patients with lung tumors. The
image are acquired by a GE Discovery ST16 PET-CT scanner
from the top of the skull to the upper part of the femur. CT
scanning parameters were 120KV voltage, 150 mA current,
and 3.75mm thickness. The pathological lungs were manually
labeled as ground truth by clinical experts. The leave-one-
out strategy was used to test the proposed method. All the
original CT image size is 512× 512× 299, and the voxel size
is 0.98mm× 0.98mm× 3.75mm.

B. Evaluation

To quantitatively assess the performance of our proposed
method, we compared the segmentation results with the ground
truth according to the following five volume and surface based
metrics: average symmetric surface distance (ASD), maximum
surface distance (MSD), true positive fraction (TPF), false
positive fraction (FPF) and dice similarity coefficient (DSC)
[9]. Paired t-test were conducted to compare the difference in
segmentation results between our method and related methods,
and a p-value less than 0.05 was considered statistically
significant.

C. Parameter Setting

Eq.(7) has two user-adjustable parameters λ3 and λ4, which
are generally critical for performance and convergence. For-
tunately, it is not sensitive to different images. λ3 controls
the sparsity of x1. λ4 controls the sparsity of x2. To generate
a sparse coefficient x1, a large λ3 is necessary. Otherwise,
Eq.(7) degenerates to the choice of shape mode pm through
x2. λ4 is similar to λ3. To test the sensitiveness of the proposed
ESSC model to the two main parameters λ3 and λ4, we have
conducted experiments on the 78 3D low-dose CT images.
The left and right lungs were segmented separately, as shown
in Fig.6. Both of λ3 and λ4 took values from 15 to 55 with an
interval of 10. Therefore, fifty experiments were done. DCS
in Fig.6 shows that this model is not sensitive to these two
hyper-parameters. In this study, λ3 = 35 and λ4 = 35 were
used.

For the remaining parameters, we used empirically [7], [9]
the following parameters: nt = 10, nm = 41, ks = 57, ht =
0.5, λ1 = 1, λ2 = 0.15, σ = 0.1, dt = 0.5, λe = 0.1, γ = 0.5
and Et = 0.05.
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(a) (b) (c) (d) (e)
Fig. 8. Lung initialization and segmentation in a CT image. (a) The red curve represents preprocessed boundaries; (b) Moved shape model (yellow surface)
using an GHT based method; (c) Initialized lungs based on DAD and ESSC (blue curve); (d) The red curve represents final segmentation of the lungs, the
green curve represents ground truth; (e) The surface distance of corresponding lung final segmentation to manual segmented lung surface.

(a) (b)

Fig. 6. Parameter sensitivity tests of λ3 and λ4. (a) Parameter setting exper-
iments were performed on the right lung; (b) Parameter setting experiments
were performed on the left lung.

Fig. 7. The segmentation accuracy of the left and right lungs as the number of
iteration increases. The blue arrow indicates that GVF begins to participate in
vertex deformation. The starting point of the abscissa axis means initializing
with the average shape.

D. Experimental Results

(1) Qualitative Results
Fig.8 shows the whole process using the proposed method

in low-dose CT image. During the experiment, the GHT-based
method can be successfully applied to localize the coarse
position of the right and left lungs. Fig.8 (c) and (d) show
the initial and final surface, respectively. Fig.7 shows the

segmentation accuracy of the left and right lungs as the number
of iterations increases, respectively.

(2) Comparison between Normal-based and GVF-based
Methods

Fig.5 shows the results of deforming the vertices by using
normal-based and GVF-based methods. As can be seen in
Fig.5(a), it was difficult to detect those boundaries of the
sharp structures in the both right and left lungs when the mesh
was adapted along its normal direction. However, GVF-based
method tended to smoothly progress into concave boundary.
Therefore, the effects of gross error with vertices positioning
will be largely eliminated in the subsequent processing steps.

Fig.9 demonstrates the initialization results of the same
image by threshold-only deformation model as in [7], [9] and
DAD-based deformation model, respectively. It clearly shows
that, under the same shape constraints (ESSC), the initial
position of the threshold-only deformation model was far away
from ground truth, while the DAD based deformation model
can drive the deformable shape mostly to the target boundary
even with large tumors. Therefore, it can derive more patient-
specific initial shapes in our segmentation framework.

To quantitatively analyze the difference of segmentation
with the respective use of normal and GVF after average
lung model localization. As shown in Table I, the GVF-
based deformation method achieved higher accuracy than
that normal-based method under both DAD and thresholding.
NDAD means to detect the candidate boundary along the
normal of vertices under DAD reconstructed, and NTM is
under threshold and morphological operation as in [7], [9]. In
addition, through the comparison between NDAD and NTM,
we can also find that the shape initialization method is superior
to thresholding as in [7], [9].

(2) Comparison between Different Shape Models
Fig.10 illustrates the comparative results of the lung seg-

mentation by using shape prior models based on PCA, con-
ventional SSC [4] and our proposed ESSC in the same
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 9. Comparison of two different initialization generated by (a)-(d) threshold-based (red curves in the 1st row) and (e)-(h) DAD-based (yellow curves
in the 2nd row) methods. (d) and (h) Initialized surface distance to ground truth, and the color bar maps and clips the surface distance between [0,10]. The
maximal surface distance is given above the color bar.

TABLE I
QUANTITATIVE COMPARISON BETWEEN NORMAL-BASED AND GVF-BASED DEFORMATION AFTER INITIALIZE SHAPE INFERENCE (MEAN ± SD).

Method Lung ASD(mm) MSD(mm) TPF(%) FPF(%) DSC(%)

NTM Left 3.79± 1.04 23.81± 6.44 94.31± 2.83 0.41± 0.12 91.31± 1.36
Right 3.72± 0.72 23.62± 8.10 94.33± 2.49 0.51± 0.15 91.25± 1.18

NDAD Left 3.17± 0.80 22.85± 8.76 94.91± 1.87 0.32± 0.13 93.05± 1.32
Right 3.16± 0.49 21.82± 7.04 95.00± 1.44 0.39± 0.15 93.10± 1.17

GVF Left 1.71± 0.61 19.00± 9.23 96.89± 2.17 0.15± 0.05 96.39± 1.34
Right 1.37± 0.44 15.21± 6.39 97.79± 1.57 0.14± 0.05 97.25± 0.92

TABLE II
P VALUE OF QUANTITATIVE COMPARISON BETWEEN NORMAL-BASED AND GVF-BASED DEFORMATION AFTER INITIALIZE SHAPE INFERENCE.

Method Lung ASD MSD TPF FPF DSC

NTM vs. GVF Left 4.79× 10−16 7.58× 10−3 1.04× 10−6 1.89× 10−6 2.31× 10−18

Right 8.61× 10−16 9.38× 10−9 1.81× 10−13 2.38× 10−17 4.75× 10−18

NDAD vs. GVF Left 5.26× 10−17 1.15× 10−3 6.66× 10−5 4.24× 10−8 4.49× 10−15

Right 4.40× 10−13 1.59× 10−7 8.69× 10−10 7.98× 10−11 8.77× 10−15

TABLE III
QUANTITATIVE COMPARISON BETWEEN PCA, CONVENTIONAL SSC AND ESSC AFTER SHAPE DEFORMATION BY GVF (MEAN ± SD).

Method Lung ASD(mm) MSD(mm) TPF(%) FPF(%) DSC(%)

PCA Left 3.28± 0.59 23.95± 8.13 94.98± 3.74 0.37± 0.21 92.03± 3.45
Right 3.09± 0.82 22.59± 7.68 94.05± 1.49 0.18± 0.06 94.77± 0.94

SSC [4] Left 2.72± 0.76 22.28± 6.94 93.86± 1.78 0.17± 0.05 94.19± 1.26
Right 2.33± 0.93 19.47± 5.66 95.09± 1.78 0.15± 0.07 95.68± 1.04

ESSC Left 1.71± 0.61 19.00± 9.23 96.89± 2.17 0.15± 0.05 96.39± 1.34
Right 1.37± 0.44 15.21± 6.39 97.79± 1.57 0.14± 0.05 97.25± 0.92

TABLE IV
P VALUE OF QUANTITATIVE COMPARISON BETWEEN PCA, CONVENTIONAL SSC AND ESSC AFTER SHAPE DEFORMATION BY GVF (MEAN ± SD).

Method Lung ASD MSD TPF FPF DSC

PCA vs. ESSC Left 2.77× 10−10 1.65× 10−2 6.74× 10−7 4.10× 10−9 7.69× 10−13

Right 3.10× 10−14 5.04× 10−7 1.18× 10−18 1.04× 10−3 6.35× 10−17

SSC vs. ESSC Left 1.12× 10−11 3.32× 10−2 4.73× 10−11 1.54× 10−2 3.08× 10−10

Right 1.75× 10−11 5.43× 10−5 1.28× 10−12 0.33 1.63× 10−9
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(a) (b) (c)

(d) (e) (f)
Fig. 10. Comparison between PCA, conventional SSC and ESSC shape prior
model. (a) and (d) The refined shape and surface distance to ground truth
using PCA, respectively. (b) and (e) The refined shape and surface distance
to ground truth using conventional SSC, respectively. (a) and (d) The refined
shape and surface distance to ground truth using ESSC, respectively. The color
bar maps and clips the surface distance between [0,10]. The maximal surface
distance is given above the color bar.

pathological case. In the experiment, only the shape prior
model will be changed and other parameters remain the same,
including the GVF based vertex searching strategy. Fig.10
(c) shows that ESSC detected more details than the other
two models. It means that our shape prior model is able to
preserve local shape details derived by appearance information
even when they are not statistically significant in the shape
repository.

Table III presents the quantitative comparative results by
using the three different shape models. ESSC achieved the
highest segmentation performance and outperformed the other
two shape models when they were employed to refine the
deformed shape.

(3) Comparison With Related State-of-the-art Methods
To highlight the advantage of our segmentation method,

we compared it with state-of-the-art segmentation approaches:
PCA and graph cut proposed by Li et al. [9], the shape-
based composition proposed by Zhang et al. [3], active shape
model(ASM) algorithm improved by Sun et al. [23], active
contour method improved by Rebouccas et al. [39] and U-
net improved by Alom et al. [29] and SegCaps proposed by
Lalonde et al. [30].

The parameters for the U-net-based method were set as
follows. The encoding part had 10 layers, and the decoding
part had the same number of layers as the encoding part.
The encoding part was down-sampled twice and the decoding
part was up-sampled twice. The binary cross entropy loss was
used, and the MSE and dice were calculated simultaneously.
The total number of training steps was 200 and batch size
was 8. The learning rate was decayed by a factor of 0.05
upon validation loss stagnation for 5000 iterations and early
stopping was performed with a patience of 250000 iterations
based on validation dice scores.

SegCaps was implemented using Keras with TensorFlow.
The batch size was 1 to match the original U-Net. The binary

cross entropy loss was used, and the MSE and dice were
calculated simultaneously. The learning rate was decayed by
a factor of 0.05 upon validation loss stagnation for 5000
iterations and early stopping was performed with a patience
of 250000 iterations based on validation dice scores. Adam
optimization was used with an initial learning rate of 0.00001.

All traditional supervised methods and our method were
trained and tested using the same leave-one-out strategy. Each
of 78 3D data had 130 slices with lungs, were divided
three groups to train (25% for validation) the deep networks.
Considered that the efficiency of deep learning was easily
affected by the training samples, we augmented the training
samples. The data was augmented as follows. Rotation range
was 0.2, width shift range was 0.05, height shift range was
0.05, Anti-clockwise angle of shear transformation was 0.05,
zoom range was 0.05, random horizontal flip and augmentation
ratio was 1:30.

Fig.11 shows three different types of challenging cases. The
1st column shows the case with the blurred boundary of lungs
between neighboring tissues in the low-dose CT image. The
3rd column shows the case with movement artifacts due to
breathing. The 5th column shows the case with the tumors
near the boundary. The 2nd, 4th and 6th columns show surface
distance between segmented surfaces and ground truth.

The first row shows segmentation results were obtained by
using Li’s method [9]. As shown Fig.11(a), local details of the
left lung was not segmented and led to undersegmentation. The
movement artifact was segmented and led to oversegmentation
as shown in Fig.11(c). As shown Fig.11(e), it was difficult to
segment lesions connected to the boundary and also led to
undersegmentation. Affected by the tumor, vertices cannot be
accurately localized.

The second row shows segmentation results were obtained
by using Zhang’s method [3]. As shown Fig.11(g)(k), local
details of the left lung was not segmented and led to under-
segmentation. Muscle and pulmonary vessels were segmented
as the lungs since SSC can strongly smooth the meshes.
As shown Fig.11(i), the lung near the movement artifact
was undersegmented. From these three cases, we can see
SSC tended to be strongly constrained by its shape model
and also led to undersegmentation or oversegmentation. The
reconstruction algorithm can not restore the desirable surface.

The third row shows segmentation results were obtained by
using Sun’s method [23]. Compared to previous two methods,
undersegmentation or oversegmentation was smaller. However,
it might produce irregular deformation in the local details with
large curvature as shown in Fig. 11 (m) and (q).

The fourth row shows segmentation results were obtained
by using Rebouccas’s method [39]. As shown Fig.11(s) and
(u), the lung near the heart, the liver and the movement artifact
were undersegmented. As shown Fig.11(w), the pathological
changes due to the tumor was undersegmented.

The fifth row shows segmentation results were obtained
by using Alom’s method [29]. Compared with the traditional
method, U-net can segment normal lungs accurately even with
large curvature. As shown in Table V, U-net acquired the
optimal MSD and FPF. U-net ignored the constraints of shape
so that tumors and areas similar to the background intensity



0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2890510, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 11

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

(y) (z) (a1) (b1) (c1) (d1)

(e1) (f1) (g1) (h1) (i1) (j1)

(k1) (l1) (m1) (n1) (o1) (p1)
Fig. 11. Segmentation comparison between Li’s method [9] (1st row), Zhang’s method [3] (2nd row), Sun’s method [23] (3rd row), Rebouccas’s method
[39] (4rd row), Alom’s method [29] (5rd row), Lalonde’s method [30] (6rd row) and our method (7th row). The 1st column shows the case with the blurred
boundary. The 3rd column shows the case with movement artifacts. The 5th column shows the case with the tumors near the boundary. The 2nd, 4th and 6th
columns show surface distance between the segmented surfaces and ground truth, and the color bar maps and clips the surface distance between [0,10]. The
maximal surface distance is given above the color bar.
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TABLE V
COMPARISON OF THE PROPOSED METHOD TO RELATED METHODS (MEAN ± SD).

Method Lung ASD(mm) MSD(mm) TPF(%) FPF(%) DSC(%)

Li et al. [9] Left 2.62± 0.91 24.97± 9.20 94.08± 3.89 0.18± 0.11 94.30± 2.25
Right 2.54± 0.65 24.91± 7.43 93.92± 2.35 0.15± 0.12 95.20± 1.15

Zhang et al. [3] Left 2.94± 0.74 26.60± 7.15 92.77± 2.56 0.17± 0.04 94.13± 1.54
Right 2.70± 0.71 25.18± 7.50 93.78± 1.96 0.15± 0.03 95.12± 1.23

Sun et al. [23] Left 3.18± 0.83 25.01± 7.50 94.90± 2.53 0.25± 0.13 93.42± 1.87
Right 2.31± 0.93 19.89± 8.07 96.41± 2.83 0.21± 0.09 95.64± 1.40

Rebouccas et al. [39] Left 2.75± 1.18 24.22± 7.92 94.17± 3.33 0.19± 0.04 94.12± 2.97
Right 2.23± 1.02 19.87± 7.20 94.47± 2.47 0.19± 0.05 95.87± 2.14

Alom et al. [29] Left 2.02± 0.67 16.78± 6.11 92.60± 3.22 0.09± 0.12 94.68± 2.79
Right 2.25± 1.11 14.98± 6.91 93.59± 2.56 0.09± 0.13 95.62± 1.52

Lalonde et al. [30] Left 2.91± 0.80 23.06± 5.47 96.48± 2.61 0.35± 0.15 93.63± 1.79
Right 2.87± 0.95 24.22± 6.65 97.61± 1.99 0.49± 0.31 93.99± 1.79

Our Left 1.71± 0.61 19.00± 9.23 96.89± 2.17 0.15± 0.05 96.39± 1.34
Right 1.37± 0.44 15.21± 6.39 97.79± 1.57 0.14± 0.05 97.25± 0.92

TABLE VI
P VALUE COMPARISON OF THE PROPOSED METHOD TO RELATED METHODS.

Method Lung ASD MSD TPF FPF DSC

Li et al. [9] vs. our Left 1.86× 10−5 8.37× 10−4 3.05× 10−4 0.054 3.16× 10−7

Right 1.70× 10−10 6.58× 10−11 2.83× 10−12 0.50 9.58× 10−11

Zhang et al. [3] vs. our Left 4.14× 10−5 2.05× 10−3 7.88× 10−5 5.52× 10−6 182× 10−4

Right 1.86× 10−5 3.82× 10−5 2.47× 10−6 5.75× 10−3 1.31× 10−5

Sun et al. [23] vs. our Left 7.52× 10−12 7.40× 10−4 3.27× 10−9 6.39× 10−7 7.96× 10−12

Right 1.69× 10−10 3.33× 10−4 2.10× 10−5 2.26× 10−6 8.20× 10−11

Rebouccas et al. [39] vs. our Left 1.23× 10−6 1.99× 10−4 1.92× 10−8 1.83× 10−12 6.02× 10−6

Right 2.30× 10−5 1.26× 10−4 1.20× 10−8 3.39× 10−9 5.21× 10−5

Alom et al. [29] vs. our Left 0.03 0.33 2.15× 10−10 1.33× 10−9 7.67× 10−6

Right 6.48× 10−5 0.56 2.28× 10−10 2.64× 10−7 3.64× 10−6

Lalonde et al. [30] vs. our Left 5.36× 10−10 7.54× 10−3 2.17× 10−9 2.31× 10−9 1.61× 10−6

Right 9.21× 10−10 5.61× 10−7 2.76× 10−5 6.94× 10−7 1.18× 10−9

were undersegmented as shown in Fig. 11 (y) and (c1).
The sixth row shows segmentation results were obtained by

using Lalonde’s method [30]. As shown Fig.11(e1) and (g1),
the lung near the heart, the liver and the movement artifact
were oversegmented. This was in accord with Table V where
FPF of the method was the largest. As shown Fig.11(i1), the
pathological changes due to the tumor was undersegmented.

The last row shows segmentation results were obtained by
using our method. These figures indicated that our method
had a good performance these challenging cases. Table V and
Table VI show the quantitatively comparative results by using
five methods. Our method achieved the highest segmentation
performance except for MSD and FPF, and outperformed the
other six methods.

E. Running time

The proposed algorithm was implemented in c++ and test on
a PC with Intel i5-3470 CPU@3.20GHz and 8GB of RAM. All
deep learning methods involved in the comparison experiment
were trained using the NVIDIA Tesla K40m GPU with 12G
memory. The average running time of the algorithm was 310±
29s. The average running time of the Li’s algorithm was 586±
69s. The average running time of the Zhang’s algorithm was
230 ± 37s. The average running time of the Sun’s algorithm
was 360± 35s. The average running time of the Rebouccas’s
algorithm was 189 ± 32s. The average running time of the

Alom’s algorithm was 7± 0.2s. The average running time of
the Lalonde’s algorithm was 48± 0.2s.

V. CONCLUSION

In this paper, we have proposed an automatic segmentation
scheme for pathological lung segmentation with the combi-
nation of 3D shape and appearance based prior information.
After the initial mesh is adapted, DAD is employed to effec-
tively label voxels. A refinement model integrating variation
models by PCA and SSC is used to achieve both robust
and accurate segmentation results. The refinement process is
implemented in a uniform average space. All training shapes
are registered to the average shape of the PDM using similarity
transformation to construct shape dictionary for sparse shape
composition in the eigenspace. On the one hand, it is helpful
to reconstruct the overall lung shape by SSC. On the other
hand, the local reconstruction error can be precisely fitted by
the shape variation mode. The deformed mesh can be adapted
to the target boundary and is further inferred by ESSC. Then,
3D GVF is also proposed to impose the gradient information
of appearance and effectively drive the vertices deformation.

To verify the applicability of the proposed method, various
pathological lungs were segmented in 78 3D low-dose CT
images with lung tumors. The proposed method is able to deal
with different challenging cases, such as the blurred boundary,
movement artifacts, tumors near the boundary, sharp structures
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and experimental results show the proposed method performs
better than state-of-the-art lung segmentation methods.
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